CLASSICAL MECHANICS

DR. KUEHN, WISCONSIN LUTHERAN COLLEGE

Homework 3

First-pass presentations on Friday, Sept. 18, 2020.

Full written solutions due Monday, Sept. 21, 2020.

(1) Mass and force. A 5 kg mass moves under the influence of a force $\vec{F} = (4t^2\hat{i} - 3t\hat{j})$ newtons, where t is the time in seconds. It starts from the origin at t = 0. Find (a) its velocity; (b) its position; and (c) $\vec{r} \times \vec{v}$ for any later time.

(a)
$$\sqrt{3} - \sqrt{3} = \frac{1}{15} + \frac{$$

(2) Blocks connected by pulley. Mass M_1 lies on the surface of a frictionless table. The string runs over a pulley, and is connected to another mass, M_2 , which is

suspended from the string next to the table. If the system is released from rest,

find how far block M_1 slides in time t.

(3) **Orbiting masses.** Two particles of mass m and M undergo uniform circular motion about each other at a separation R under the influence of an attractive force F. The angular velocity is ω radians per second. Show that $R = (\frac{F}{\omega^2})(\frac{1}{m} + \frac{1}{M})$

N3L =>
$$F_{12} = -F_{21}$$
 => $mq_2 = mq_1 = F$
 $q_1 \otimes q_2 = mq_1 = F$
 $q_1 \otimes q_2 = mq_1 = F$
 $q_2 \otimes q_3 = mq_1 = F$
 $q_3 \otimes q_4 = mq_1 = F$
 $q_4 \otimes q_5 = mq_1 = F$
 $q_5 \otimes q_7 = mq_1 = F$
 $q_7 \otimes q_7 = mq_1 = mq_1 = F$
 $q_7 \otimes q_7 = mq_1 = mq_1 = F$
 $q_7 \otimes q_7 = mq_1 = mq_1 = F$
 $q_7 \otimes q_7 = mq_1 = mq_1 = F$
 $q_7 \otimes q_7 = mq_1 = mq_1 = F$
 $q_7 \otimes q_7 = mq_1 = mq_1 = F$
 $q_7 \otimes q_7 = mq_1 = mq_1 = mq_1 = F$
 $q_7 \otimes q_7 = mq_1 =$