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Chapter 1

Introduction to
Computerized
Instrumentation

1.1 Overview

This manual is designed to accompany an introductory course on the uses of a
small computer in the laboratory. The primary aims of this course are to teach
you (1) how set up a computer–controlled laboratory experiment and (2) how
to produce a publication-quality scientific paper detailing your results. Along
the way, you will learn a bit about computer system administration and pro-
gramming, analog and digital electronics, scientific data collection and analysis,
temperature measurement and regulation, and the mathematical theory of heat
conduction.

During a traditional 15-week semester, the students meet with the instructor
twice a week for three hour laboratory sessions. Typically, students will need
to do three additional hours of work per week outside of scheduled class time
in order to complete all of the assignments. Course grades will be assigned
based on completion of exercises recorded in a laboratory notebook and a final
scientific paper. Details regarding the laboratory notebook expectations and
scientific paper format are provided in a later section.

Students enrolled in this course often have a wide range of backgrounds:
some come with only a strong desire to learn; others, because of their previous
study, could practically teach the course. For this reason, the course is designed
to be flexible in that students are encouraged to work at their own pace. Nat-
urally, the present laboratory manual cannot cover every problem or challenge
that might arise when working with computers in a laboratory setting. So I
strongly encourage those of you who are more experienced to share your under-
standing with students who have not had as much preparation. Be generous! I

1



2CHAPTER 1. INTRODUCTION TO COMPUTERIZED INSTRUMENTATION

think you will find that in explaining concepts to others, you will deepen your
own understanding as well.

1.2 Motivation

Why set up a computer-controlled laboratory experiment? Primarily for au-
tomation. Although an experimenter can certainly record the output of an
instrument and record it in his or her laboratory notebook, when this needs to
be done ten or a hundred or a thousand times, the chance of a scribal error
increases to an unacceptable level. Automation allows for reduction of errors in
data collection. Automation also reduces the amount of tedious human labor.
The experimenter can do other tasks–often remotely–while his or her experi-
ment is running instead of focusing on repetitive tasks. In addition, automation
allows for performance that is simply unattainable otherwise. A human being
can not record a hundred temperature readings every second. A computer can.
Finally, automation allows for information to be readily stored in digital form,
which is much simpler to manipulate and analyze.

A word of warning about automation, however, is in order. Automation
can often introduce systematic errors which, if not detected and corrected in
time, can prove catastrophic. To take just one example, consider the loss of
NASA’s Mars Climate Orbiter in September of 1999. A programming error
went undetected and a $330 million dollar science project (in expensive 1999
dollars...) was lost in an entirely automated fashion as it approached surface of
Mars. Apparently, there was a programming error due to an incorrect thrust
unit conversion from the imperial to metric system. The adage that a computer
is only as smart as its designer is entirely appropriate. Automation is not a
silver bullet and should not be thought of as such. A great deal of planning
and careful experimentation is necessary before a reliably automated system
can be produced. Do not be afraid to experiment; trial and error is the way to
learn. Hopefully, this course will give you a deeper understanding of computer
technology so that you may intelligently use it to your advantage.

1.3 Equipment

This course has evolved since its inception in early 2000. Originally, the course
employed a “Wintel” desktop personal computer1 running the QNX real-time
operating system. An analog-to-digital (A/D) computer board2 was installed in
one of the ISA slots of the PC’s motherboard. Such an A/D board is similar to a
keyboard, mouse, or monitor, in that it allows the computer’s microprocessor to
communicate with the outside world; it is unlike these three peripheral devices
in that it is not designed to communicate with a human, but rather with a piece

1In “Wintel” machines, the computer’s motherboard was developed around the Intel pro-
cessor architecture and it often used a Microsoft Windows-like operating system. Such PCs
are descendants of the original IBM-PC.

2Measurement Computing, CIO-DAS-08 JR
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of equipment that produces a voltage (e.g. the signal from a thermistor) or that
needs an electronic signal to operate (e.g. a heater or a light emitting diode).
The C-Programming language was used to communicate with the A/D board.

As of 2024, an internal A/D board is no longer used. It has been replaced
by an external ESP32 micro-control unit attached via a USB cable to the PC.
The ESP32 board is mounted on a proto-typing board (proto-board for short),
as shown in Fig.1.3, in order to connect auxiliary electronic equipment. On
the proto-board, you will be constructing circuits using jumper wires, resistors,
capacitors, light emitting diodes (LEDs), field effect transistors (FETs), ther-
mistors, and switches. To operate and test these circuits, you will also need
an oscilloscope, a function generator, and a DC power supply. The Python
Programming language will be used to communicate with the ESP32 micro-
controller.

Figure 1.1: The ESP32 WROVER microcontroller mounted via a GPIO Exten-
sion Board onto a protoboard.

In order to carry out the temperature control and heat diffusion experiments,
your laboratory instructor will provide you with (1) a small block of aluminum
in order to test your temperature measurement and control techniques, and (2)
a rod of copper to measure its heat capacity and thermal conductivity. The
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aluminum block and the copper rod each contain an integral heater and one or
more mounted thermistors.

1.4 Writing and submitting laboratory documen-
tation

The exercises in this manual involve writing computer code, performing calcu-
lations, building electronic circuits, collecting and analyzing experimental data,
and occasionally answering theoretical questions. I hope you find them interest-
ing! In any case, whenever you complete an exercise, you must documented your
work and submit it electronically to the course instructor. In this way, both you
and the instructor will have a detailed record of all that you have accomplished
in this course. You will only receive credit for laboratory exercises that
are electronically submitted to the instructor in a timely manner. For
consistency, let us now agree to adopt a consistent naming convention for each
document that is electronically submitted; if a student with the initials A.C.K
is submitting exercise 2.1.1, then his submitted file name should be:

phy215_ex_2_1_1_ack

There are many ways to produce appropriate electronic laboratory docu-
mentation. Your instructor will provide you with some recommendations and
a few example documents to show you what is expected. Generally speaking,
the laboratory documentation should provide its reader with enough informa-
tion that he or she has a fighting chance of reproducing what you did. More
specifically, your laboratory documentation should include:

• the exercise number and title (e.g. Ex. 2.1.1: System capabilities);

• your name and the date(s) on which the exercise was performed;

• a concise description of what you have done using complete sentences and
correct grammar, spelling, and punctuation;

• neat sketches or photographic images of your laboratory setup;

• proper electronic circuit diagrams;

• clear pseudo-code or code snippets that include appropriate comments;

• mathematical calculations with clear explanation;

• experimental results, data tables, and properly labelled graphs;

• descriptions of difficulties and your solutions or work-arounds;

• any additional thoughts or insights that you think may be helpful.
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1.5 Additional course resources

There is no single text for this course. We will primarily follow the exercises out-
lined in this manual, which was based, in part, on undergraduate courses taught
at the University of California at Santa Barbara and at Cornell University. Some
sections of this manual are adapted directly from the highly informative IBM
PC in the Laboratory, by Thompson and Kuckes[6], the text formerly used at
Cornell. Here are a few additional resources that you will find very helpful:

• ESP32 micro-controller documentation, especially the ESP32 data-sheet
and the ESP32 getting-started tutorial available for download as pdf files
from FreeNove.

• Python Crash Course, 3rd Edition, by Eric Matthes. This book provides
an excellent and comprehensive introduction to programming in Python.

• The Art of Electronics by Horowitz and Hill. This is a classic covering
analog and digital electronics.
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Chapter 2

Getting Started

2.1 System Administration

Without an operating system (OS), your computer is merely a collection of
metal and plastic and semiconductor parts. The operating system allows a user
to manage a computer’s resources–its disk drive, monitor, keyboard, programs,
network and sound cards, and so on. Examples of popular operating systems
are Linux, UNIX, Mac OSX, and Microsoft Windows.

In this course, you will use your own computer with your choice of operating
system. Minimally, you will need a computer that has a keyboard, monitor, and
one USB port that will allow the ESP32 microcontroller to communicate with
the computer.

2.1.1 System capabilities exercise

If you have not already done so, now is a perfect time to familiarize yourself
with your personal computer.

1. What operating system are you using? What version?

2. What kind of computer are you using? What is the make and model?
When was this manufactured?

3. What kind of ports does your computer have? Provide any notable infor-
mation about these ports.

4. How much memory does your hard disk have? What is your processor
speed? How much RAM (Random Access Memory) does your computer
have?

5. About how many copies of the book of Genesis would fit on your hard
disk? (Hint: This is a bit tricky. To answer this question, you might take
this approach: (i) estimate the memory required per ASCII character (in

7



8 CHAPTER 2. GETTING STARTED

bits or bytes), (ii) estimate how many characters there are per page of
Genesis, and (iii) estimate how many pages there are in Genesis.)

When writing up your laboratory documentation for this first exercise, don’t
forget to give context for your answer, instead of just writing down an answer.
For example, for the first question above, you could write

1. My operating system: macOS Sonoma 14.1.

2.2 Getting started with python

All of the applications you run, whether they are mail programs or web browsers
or even graphical user interfaces, are computer programs written by a program-
mer. In this course, we will be developing our own applications with an eye to-
ward controlling laboratory equipment and carrying out scientific experiments.
The programming language we will use is called Python. You may already be
familiar with programming. If so, this should be review for you. If not, it’s time
to learn! Let’s begin by installing python and writing our first program.

2.2.1 Installing python exercise

Let’s install Python on your computer (if you have not done so already). Much of
what follows is an abbreviated version of the instructions for setting up Python
on macOS that is contained in Python Crash Course by Eric Matthes. For
detailed instructions on installing Python on other operating systems, please
refer to the appropriate section (Appendix A) of that text.

1. Open a terminal. Enter python3. If you get a message about installing
command line utilities tools, then you do not have python. If you do not
have python3 or later, you will need to install it. Otherwise, you can skip
the next step.

2. Go to https://python.org and download the latest version of Python. Run
the installer. After installation, a finder window will open. Double-click
install Certificates.command. This will allow you to install additional
libraries more easily when necessary.

2.2.2 Running python from the command line exercise

Now let’s try to run some python code.

1. Open a terminal on your PC. Type python3. This should start a python
terminal session. A python prompt should appear:

>>>
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2. If it does not, then you may need to double-click on the file Update Shell
Profile.command that is located in your newly installed Python directory.
As explained in the first few lines of this file (which can be examined using
a text editor), double-clicking this file executes a script that will update
your shell profile when the ’bin’ directory of python is not in the path
of your shell. Open a new terminal and type python3 again; a python
prompt should now appear:

>>>

3. Enter the following text:

>>> print("Hello Python interpreter!")

The python interpreter should echo back to you the text contained between
your quotation marks. If so, congratulations! You have successfully installed
the python interpreter!

2.3 Interactive development environment (IDE)

In this course, you will be running most of your python programs using an IDE
(interactive development environment). An IDE combines a text editor with
other tools that are useful for software development, such as an interpreter, a
debugger, various automation tools, and a terminal for interacting with your
operating system. One example of an IDE is VS Code; another is PyCharm; a
third is Thonny. We will plan to use Thonny in this course.

2.3.1 Installing Thonny exercise

1. Navigate your web browser to thonny.org and download the latest version
of Thonny for your operating system.

2. If you are using macOS, use the package manager to install the software.

3. Start up Thonny by double-clicking on the application icon.

4. In the Thonny editor, which is presently untitled, enter the following text:

print("Hello Thonny User!")

5. Save this file as hello thonny.py in an appropriate directory. At this point,
it is important to start thinking about how you will orgainze your files
that you generate in this course. You will have many. So you may wish
to create a dedicated directory called src py, or something to that effect,
in which to put your python source code.

6. Run your code by selecting
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Run > Run Current Script

The result of running your code should appear in the window titled Shell.

Congratulations! You have successfully installed Thonny and used it to create
and run some python code. Now let’s write some more sophisticated code.



Chapter 3

Basic Python Programming

3.1 Variables and simple data types

In the following exercises, you will learn a bit about how to use variables and
other simple data types in Python. The exercises listed in this section can be
found in the gray ”try it yourself” boxes of Eric Matthes’ book titled Python
Crash Course, Ed.3, henceforth referred to as PCC. If you do not know how
to do the exercises, as you probably will not if you don’t already know Python,
then you should read the pages that precede each exercise.

3.1.1 Simple messages exercise

Read PCC pages 16-19 and do exercise 2-2: assign a message to a variable, and
print that message. Then change the value of the variable to a new message,
and print the new message.

3.1.2 Name cases exercise

Read PCC pages 19-25 and do exercise 2-4: use a variable to represent a person’s
name, and then print that person’s name in lowercase, uppercase, and title case.

3.1.3 Name eight exercise

Read PCC pages 26-29 and do exercise 2-9: write addition, subtraction, multi-
plication, and division operations that each result in the number 8. Be sure to
enclose your operations in print() calls to see the results. Your output should
be four lines, with the number 8 appearing once on each line.

3.1.4 Names exercise

Read PCC pages 34-36 and do exercise 3-1: store the names a few of your friends
in a list called names. Print each person’s name by accessing each element in

11
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the list, one at a time.

3.1.5 Guest list exercise

Do exercise 3-4: If you could invite anyone, living or deceased, to dinner, who
would you invite? Make a list that includes at least three people. Then use
your list to print a message to each person, inviting them to dinner.

3.1.6 Seeing the world exercise

Do exercise 3-8.

3.1.7 Animals exercise

Do exercise 4-2: Think of at least three different animals that have a common
characteristic. Store the names of these animals in a list, and then use a for
loop to print out the name of each animal. Modify your program to print a
statement about each animal, such as A dog would make a great pet. Add a line
at the end of your program , stating what these animals have in common. You
could print a sentence, such as Any of these animals would make a great pet!

3.1.8 Cubes exercise

Do exercise 4-8: A number raised to the third power is called a cube. For
example, the cube of 2 is written as 2 ∗ ∗3 in Python. Make a list of the first 10
cubes, and use a for loop to print out the value of each cube.

3.1.9 Buffet exercise

Do exercise 4-13: A buffet-style restaurant offers only five basic foods. Think of
five simple foods, and store them in a tuple. Now use a for loop to print each
food the restaurant offers. Try to modify one of the items, and make sure that
Python rejects the change. Now the restaurant changes its menu, replacing two
of the items with different foods. Add a line that rewrites the tuple, and then
use a for loop to print each of the items on the revised menu.

3.2 Putting it all together

We have just spent considerable time learning how to do basic Python program-
ming. Now let’s try to apply what we’ve learned. We will write a program
that converts a bunch of Fahrenheit temperature values to Celsius temperature
values.
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3.2.1 Temperature Conversion exercise

1. Write a program that generates 100 fahrenheit-celsius pairs starting at 0
degrees fahrenheit and going up to 300 degrees fahrenheit. Hint: your
program should use a loop and should compute the value of celsius that
corresponds to each value of fahrenheit.

2. Modify the program so that it prints a nice header above the table. The
header should be justified so that it lines up with the numbers.

3. Now modify the program so that in addition to printing the Fahrenheit
and Celsius temperatures, it also prints the temperature in Kelvin. Modify
the header accordingly.

4. Change your program so that it uses floating-point arithmetic and prints
out the results to one place behind the decimal point. Also: see if you can
make it really pretty by aligning the columns of numbers on the decimal
points.

Congratulations! You have come a long way in learning how to write Python
programs run by your personal computer. In the next chapter, we will learn how
to set up and program an ESP32 WROVER microcontroller using Python. This
will allow us to control external devices, such as LEDs, thermometers, heaters,
and just about anything that operates using an electronic signal.
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Chapter 4

Introduction to
Microcontrollers

In the previous chapter, we worked through a number of exercises with the goal
of learning how to do basic Python programming. These exercises were taken
largely from the book Python Crash Course. In the present chapter, we will
learn how to set up the ESP32 WROVER microcontroller.

4.1 ESP32 microcontroller setup

Your instructor should provide you with a Freenove Basic Starter Kit for ESP32.
Let’s get this working.

4.1.1 Downloading ESP32 tutorial package exercise

1. The documentation, tutorials, and sample code for the ESP32 are all
available as a zipped file by clicking here: Freenove Basic Starter Kit for
ESP32. Download this package to your PC and place it in an appropriate
directory for this class.

2. The ESP32 can be programmed in either C or micro-python. Since we
will be programming in Python, you should open the tutorial that is found
in the Python directory of your downloaded package. You may wish to
print a hard-copy of the Python tutorial for easy future reference.

3. Read the first seven pages of the Python tutorial. Open the starter kit
when you get to the section describing the ESP32-WROVER and take a
look at it. Be sure you can identify the ESP32-WROVER, the extension
board, and the protoboard.

Since we previously installed Thonny on your PC, some of the work in Chapter 0
of the Python tutorial is already completed. Nonetheless, it is worthwhile look-
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ing through this section to make sure that your installation is correct. In par-
ticular, you may wish to look at the section on Basic Configuration of Thonny.
Most importantly, in order to run Python programs directly on the ESP32, we
will need to flash firmware to the ESP32. The instructions for downloading and
installing the firmware described on page 26 of the tutorial.

4.1.2 Flashing firmware to ESP32 exercise

1. Connect your PC to the ESP32 micro controller using a USB cable. Check
to be sure that the ESP32 device can be identified. On macOS, this can be
done by inspecting the USB hardware in System Information . If the de-
vice cannot be recognized, then you may need to install the CH34x usb to
serial device driver, which is included with the ESP32 package you down-
loaded. All this is explained in the file CH34X drv instal instructions. Af-
ter installing the driver, on macOS you can check that the device drivers
are working properly by typing

>>> ls /dev/tty*

in the command line of a terminal. In the terminal, you should see listed

/dev/tty.wchusbserial21420

Note: the above procedure will not work if you are using a Windows
machine. If you are using a Windows machine, you will need to use the
Device Manager to find the correct COM port (usually COM4). You may
also need to change the default connection speed from 9600 bits/second
to 115200 bits/second. This can be done using the Port Settings tab of
the Device Manager.

2. When you are sure that you can use your PC’s USB port, open Thonny.
The Thonny IDE should display the files that are on your personal com-
puter (this computer) and also on your ESP32 WROVER (the micropy-
thon device). Thonny should also display an “untitled” window that can
be used to generate and edit files, and also a “shell” window that acts as
a terminal for running Python commands.

3. Next, follow the firmware installation instructions provided in the manual.
In short, you should begin by selecting as the interpreter: Micropython
(ESP32). This implies that any code you run in the Thonny shell will be
interpreted/executed by the connected ESP32 device, rather than by your
local PC, as you had been doing in the past. You will also need to set the
port correctly. For example:

/dev/cu.wchusbserial21420
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Once again, the above procedure will not work if you are using a Windows
machine; the appropriate COM port must be selected.

Then you will need to flash the firmware on your ESP32 device. Be sure
to select the correct target port (wchusbserial) and MicroPython family
(ESP32) and variant (Espressif ESP32). When you finally click “install”,
it should take a few minutes to write the firmware to the ESP32 device.

4. Test the shell command by typing “print(’hello world’)” in the shell win-
dow. Press enter and verify that the code runs on your ESP32 device.
Congratulations! Now you can run Python code using either the ESP32
or your PC, depending on what you choose as your interpreter.

4.2 Using the ESP32 online and offline

When you downloaded the Freenove Basic Starter Kit for ESP32, you down-
loaded a number of Python sample programs. These can be found in the newly
downloaded Python Codes subdirectory on your PC. In the following two ex-
ercises, found on pages 32 - 38 of the tutorial, you will learn how to run code
both online and offline.

4.2.1 Testing code online exercise

1. After starting Thonny, open the HelloWorld.py, script which is located in
the Python Codes directory that you downloaded to your PC.

2. Run the script by clicking Thonny’s green arrow button.

Note that if you press the reset key of ESP32, the code will not be executed
again. If you want to have the code run each time you press the reset key of
the ESP32, you will need to run the script offline.

After the your press the reset button, the device first automatically run the
file boot.py, which was placed in the root directory of the ESP32 when you
installed the firmware. It then runs main.py. Finally, it enters “shell”. In order
to execute a user’s program after pressing the reset button, we need to upload
a different boot.py file than the one that is installed already. Let’s do that.

4.2.2 Testing code offline exercise

1. Make a copy of the Python Codes directory on your PC. Then if we modify
files, we will still have the original unmodified files.

2. Expand the 00.1 Boot subdirectory in the Python codes directory on your
PC. Double click on the boot.py file that is located in this subdirectory.
The file should open so you can look at the code. This a modified version
of the original boot.py file; it is modified so as to allow programs to run
offline.
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3. Upload this modified boot.py file to your MicroPython device. This new
boot file should appear on the MicroPython device

4. Now upload HelloWorld.py to the MicroPython device.

5. Press the reset key on the device; see that the code is executed each time
you press the reset key on your device. This should be the case for any
code you now load onto the device.

6. Delete theHelloWorld.py file from your microcontroller. Now select Blink.py
in the 01.1 Blink directory on your PC. Upload this file to the microcon-
troller’s root directory. Press the reset button on your device and see the
blue led on the device begin to blink. Do it again.

7. Finally, delete the Blink.py file from your microcontroller. Press the reset
button on the device and see the blinking stop.

Perhaps it is not clear to you that the ESP32 device is running code all by itself.
This exercise will demonstrate that it is by removing the USB cable altogether.

4.2.3 “Cutting the cord” exercise

1. Using Thonny, open the file Blink.py on your PC. Using the “file” tab,
save the Blink.py file to your microcontroller device as main.py.

2. Use a 9-volt battery to power your ESP32 WROVER microcontroller and
disconnect the USB cable entirely.

3. Press the reset button and watch the LED blink. This should demonstrate
that any code you save to the microcontroller as main.py will be run even
if not attached to your computer so long as the microcontroller has power.

Note: Thonny should display the files that are located on your PC and the files
that are located on your Microcontroller in different panes or file browsers of the
IDE. It it does not, then you may need to add the file browser tool to Thonny.
To add it go to View ¿ Files and you’ll see two panes: the top pane shows your
PC files and the bottom one shows the files stored on the microcontroller. Also
note that in the filename tab, square brackets [filename.py] indicate that the file
is located on the microcontroller. No brackets means it is stored on your PC.

4.3 Reading assignment

To prepare for what comes next, your should read through the end of Chapter 0
of the tutorial. This will give you a sense of what the various pins of the ESP32
can do. Also, you should begin to read Chapter 1. In the next chaper, we will
learn more about how to program the ESP32. Keep in mind that our goal is to
use this device to facilitate doing scientific experiments.



Chapter 5

Digital output

In the previous chapter, we learned how to program the ESP32 mircrocontroller
to carry out simple commands. In the present chapter we will learn how to build
elementary circuits on the protoboard (on which the ESP32 microcontroller is
mounted) that allow the microcontroller’s digital output ports to perform basic
tasks, such as turning on and off an LED. In the next chapter, we will learn
how to use the analog input ports of the ESP32 to read voltages from external
devices. Remember that we are working up to a point where we can carry out a
scientific experiment involving the measurement of the thermal conductivity of
a rod of copper. As you do the following exercises, you might start pondering
how such a task might be accomplished.

5.1 Number Systems

Although we write programs in high-level languages such as Python, which look
more or less like English, the computer translates these programs into its own
language, called machine code. Machine code consists of just ones and zeros.1

A number system consisting of just ones and zeros is called a binary number
system. The hexadecimal number system provides a shorthand notation to
represent large binary numbers. It will be very useful to become acquainted
with binary and hexadecimal number systems and their relationship to our
decimal number system with which we are more accustomed.2

The decimal number system is so called because it uses base 10. A number
such as 293 can be described by the equation

1At the level of hardware, a one or a zero corresponds to a tiny device–such as wire or
a capacitor–acquiring a high or a low voltage. For purposes of this course, we can largely
overlook the physical implementation of digital ones and zeros.

2The ancients used alternative numbering systems. For example, we inherited the sexagesi-
mal (base-60) system of recording both time and small angles from the ancient Babylonians.[3]
Thus, there are sixty minutes in an hour, sixty seconds in a minute, sixty thirds in a second,
sixty fourths in a third, etc..

19
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293 = 2× 102 + 9× 101 + 3× 100 (5.1)

That is: 2 one-hundreds plus 9 tens plus 3 ones. The binary number system is
so called because it uses base 2 instead of base 10. This means that a number
such as 23 can be described in the binary number system by the equation

23 = 1× 24 + 0× 23 + 1× 22 + 1× 21 + 1× 20 (5.2)

That is: 1 sixteen plus 0 eights plus 1 four plus 1 two plus 1 one.

5.1.1 Binary numbers exercise

1. Write the following decimal numbers in binary: 12, 18, 39, 241.

2. Write out a binary multiplication table from binary 000 to binary 111.
Hint: this should be an 8 by 8 table.

3. Challenge: what type of logical operation(s) must be used in order to
multiply binary numbers? (bitwise AND? OR? XOR? or something else?)

The hexadecimal number system is so called because it uses base 16. In Tab.
5.1 are shown correspondences between some binary, hexadecimal, and decimal
numbers. Whereas the ’nice round numbers’ in decimal are multiples of 10:
100 = 1, 101 = 10, 102 = 100, and 103 = 1000, the ’nice round numbers’ in
binary are multiples of 2: 20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16, 25 = 32,
26 = 64, and 27 = 128. Similarly, the ’nice round numbers’ in hexadecimal are
multiples of 16, such as 160 = 1, 161 = 16, 162 = 256, and 163 = 4096. Also,
notice in Tab. 5.1 that every four binary digits corresponds to one hexadecimal
digit. It is thus customary to group binary numbers in clusters of four digits.
For example, the hexadecimal number 2B5 is written in binary as 0010 1011
0101. Often, to denote that a number is in hexadecimal notation, a 0x is place
before it. In this notation, we would write the previous hex number as 0x2B5.

5.1.2 Hexadecimal numbers exercise

1. Write the following decimal numbers in binary and hexadecimal notation:
7, 42, 826.

2. Write the following hexadecimal numbers in decimal and binary notation:
0x03, 0xA7, 0x3BF1

5.1.3 Number systems in history exercise

1. Who invented the decimal number system? In what century was it intro-
duced to Europe, and by whom? Write down the sources of your answers.

2. What base does the Roman numeral system use?

3. Why might the ancient Babylonians have used a base 60 numbering sys-
tem?
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binary hexadecimal decimal
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 A 10
1011 B 11
1100 C 12
1101 D 13
1110 E 14
1111 F 15

0001 0000 10 16

Table 5.1: Comparison of binary, hexadecimal, and decimal representation of
numbers.

5.2 Using the ESP32 digital output ports

Why are we learning about binary and hexadecimal number sytems? As it turns
out, writing a binary value to a particular digital output port of the ESP32 board
allows us to set the voltage of that port HI (digital one) or LO (digital zero).
Multiple digital output ports can be simultaneously set to a desired value by
writing a string of digital values to a series of digital output ports. For example,
writing the binary number 1110 can be used turn on the first three digital output
ports and turn of the last one. We will come back to this later. In the mean
time, let’s do a few simpler exercises.

In these exercises, you will be asked to set up some circuits, download code
to your micropython device, and run the code. Make an attempt to understand
how the code works, but don’t worry too much if you don’t understand all the
details. Some of the code uses loops and conditional statments. We’ll come
back and learn more about these topics in the next chapter.

5.2.1 Blink LED exercise

Read pages 54 - 61 in the freenove python tutorial. Carry out Project 1.2:
Blink.
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5.2.2 Button and LED exercise

Read pages 62 - 68 in the freenove python tutorial. Carry out Project 2.1 Button
and LED.

5.2.3 Mini table lamp exercise

Read pages 69-73 in the freenove python tutorial. Carry out Project 2.2: Mini
table lamp

5.2.4 Flowing light exercise

Read pages 74-79 in the freenove python tutorial. Carry out Project 3.1 Mini
table lamp

5.2.5 Breathing LED exercise

Read pages 80-86 in the freenove python tutorial. Carry out Project 4.1: Breath-
ing LED

5.2.6 Meteor flowing light exercise

Read pages 87- 92 in the freenove python tutorial. Carry out Project 4.2: meteor
flowing light

5.2.7 RGB LED exercise

Read pages 93-98 in the freenove python tutorial. Carry out Project 5.1: random
color light

5.2.8 Gradient LED exercise

Read pages 99- 100 in the freenove python tutorial. Carry out Project 5.3:
gradient color light

5.2.9 Switching speed exercise

1. Write a program that flips an LED on and off once per second. Put a
printout of the working program in your notebook.

2. Modify your program so that the switching speed is 500 Hz.

3. Plug in the BNC cable with the oscilloscope probes into CH 1 of the
oscilloscope. Hook up the probes across the diode and observe the diode
voltage as a function of time. The ground lead of the oscilloscope probe
should be connected to the ground of the system, i.e. the lower voltage
of the LED. Never connect the oscilloscope probe ground to any point of
a circuit which is not ground. Set the scope trigger control to AUTO; be
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sure the small switch on the probe tip is set to 1x; set the vertical scale
to 1.0 V/DIV and the VARIABLE knob to the CALibrated position; set
a 0 V baseline by using the ground switch and vertical position knob on
the scope. Set the horizontal scale to 1 ms TIME/DIV. You may need to
adjust the intensity, focus, position, and TRIG LEVEL to observe a nice
square wave.

4. What is the highest frequency square wave that you can generate? Hint:
You may want to just omit the delay statements in your program.
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Chapter 6

A Little More Python
Programming

In Chap.3, we learned the basics of how to program in python. In particular,
we went through a number of exercises from Python Crash Course, that taught
us about variables and simple data types, such as integers and lists. We even
learned how to write a program that converts Fahrenheit to Celsius temper-
atures. We then proceeded, in Chap.5, to write some python programs that
allowed us to control the digital output ports of the ESP32 microcontroller.
Well, not exactly. Technically, we copied and pasted code that somebody else
wrote. Some of this code was probably a bit opaque because you were not fa-
miliar with some of the functions and data types that these programs employed.
In this chapter, we will step back, so to speak, and learn more about python
programming so we can intelligently write and use our own code. To do so, we
will go through a few more exercises from Python Crash Course (PCC). You
should read the sections of text that precede the prescribed exercises and then
carry them out. Remember to write down what you did in your lab book!

6.1 If statements

The next few exercises are from Chapter 5 of PCC.

6.1.1 Conditional tests exercise

Do exercise 5-1: write a series of conditional tests. Print a statement describing
each test and your prediction for the results of each test.

6.1.2 Stages of life exercise

Do exercise 5-6: Write an if-elif-else chain that determines a person’s stage of
life. Set a value for the variable age and print an appropriate message.

25
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6.2 User input and while loops

The next few exercises are from Chapter 7 of PCC.

6.2.1 Multiples of 10 exercise

Do exercise 7-3: Multiples of ten: Ask the user for a number, and then report
whether the number is a multiple of 10 or not.

6.2.2 Movie tickets exercise

Do exercise 7-5: Movie tickets. A movie theater charges different ticket prices
depending on a person’s age. If a person is under 3, the ticket is free; it they
are between 3 and 12, it is 10 USD; if they are over 12, the ticket is 15 USD.
Write a loop in which you ask users their age, and then tell them the cost of
their ticket.

6.3 Functions

The next few exercises are from Chapter 8 of PCC

6.3.1 Message exercise

Do exercise 8-1: Message: write a function called display message() that prints
one sentence telling everyone what you are learning about in this chapter. Call
the function, and make sure the message displays.

6.3.2 T-shirt exercise

Do exercise 8-3: T-Shirt: write a function called make shirt() that accepts a
size and the text of a message that should be printed on the shirt. The function
should print a sentence summarizing the size of the shirt and the message printed
on it. Call the function using positional arguments to make a shirt. Call the
function a second time using keyword arguments.

6.3.3 City names exercise

Do exercise 8-6: City names: write a function called city country() that takes
in the name of a city and its country. The function should return a formatted
string containing the city, country pair. Call your function with at least three
city-country pairs, and print values that are returned.
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6.3.4 Messages exercise

Do exercise 8-9: messages: make a list containing a series of short text mes-
sages. Pass the list to a function called show messages(), which prints each text
message.

6.3.5 sandwiches exercise

Do exercise 8-12: sandwiches: Write a function that accepts a list of items a
person wants on a sandwich. The function should have one parameter that
collects as many items as the function call provides, and it should print a sum-
mary of the sandwich that’s being ordered. Call the function three times, using
a different number of arguments each time.

6.3.6 imports exercise

Do exercise 8-16: imports: Using a program you wrote that has one function in
it, store that function in a separate file. Import the function in to your main
program file, and call the function using several approaches (see PCC pg. 154).

6.4 Classes

The following exercises are designed to introduce you to the concepts of object-
oriented-programming. You will write classes that describe real-world things,
and you will create objects based on these classes. Since this topic is a bit ore
abstract, you are highly encouraged to read the text of PCC preceding each
exercise.

6.4.1 users exercise

Do exercise 9-3: users: Make a class called User. Create two attribues called
first name and last name, and then create several other attributes that are phys-
ically stored in a user profile. Make a method called describe user() that prints
a summary of the user’s information. Make another method called greet user()
that prints a personalized greeting to the user. Create several instances repre-
senting different users, and call both methods for each user.

6.4.2 login attempts exercise

Do exercise 9-5: login attempts: Add an attribute called login attempts to your
User class from Ex.6.4.1. Write a method called increment login attempts()
that increments the value of login attempts by 1. Write another method called
reset login attempts() that resets the value of login attempts to 0. Make an
instance of the User class and call increment login attempts() several times.
Print the value of login attempts to make sure it was incremented properly, and
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then call reset login attempts(). Print login attempts again to make sure it was
reset to 0.

6.4.3 admin exercise

Do exercise 9-7:Admin: An administrator is a special kind of user. Write a class
called Admin that inherits from the User class you wrote in Ex.6.4.2 Add an
attribute, privileges, that stores a list of strings like “can add post”, “can delete
post”, “can ban user”, and so on. Write a method called show privileges() that
lists the administrator’s set of privileges. Create an instance of Admin, and call
your method.

6.4.4 privileges exercise

Do exercise 9-8: privileges: Write a separate Privileges class. The class should
have one attribute, privileges, that stores a list of strings. Move the show privileges()
method to this class. Make a Privileges instance as an attribute in the Admin
class. Create a new instance of the Admin and use your method to show its
privileges.

6.4.5 imported admin exercise

Do exercise 9-11:imported admin: Start with your work from Ex.6.4.4. Store
the classes User, Priviliges, and Admin in one module. Create a separate file,
make an Admin instance, and call show privileges() to show that everything is
working correctly.

6.5 Files and Exceptions

Let’s learn about one more topic: files. Then we will re-write our Fahrenheit
to Celsius conversion program using some of the stuff we’ve learned. Start
by taking a look at the tutorial in the official python documentation: https:

//docs.python.org/3/tutorial/inputoutput.html#tut-files. Then com-
plete the following exercises which use the open() command.

6.5.1 learning python exercise

Learning python: Open a blank file in your text editor and write a few lines
summarizing what you’ve learned about python so far. Start each line with the
phrase In Python you can... Save the file as learning python.txt in the same
directory as your exercises from this chapter. Write a program that reads the
file and prints what you wrote two times: print the contents once by reading in
the entire file, and once by storing the lines in a list and then looping over each
line.

https://docs.python.org/3/tutorial/inputoutput.html#tut-files
https://docs.python.org/3/tutorial/inputoutput.html#tut-files
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6.5.2 guest book exercise

Guest book: Write a while loop that prompts users for their name. Collect
all the names that are entered, and then write these names to.a file called
guest book.txt. Make sure each entry appears on a new line in the file.

6.5.3 common words exercise

Common words: Copy some selected text from Project Gutenberg into a text
file on your computer. You can use the count() method to find out how many
times a word or phrase appears in a string. Write a program that reads your
text file and determines how many times the word “the” appears in the text.
This will be an approximation because it will also count words such as “them”
and “then”. Try counting “the ”, with a space in the string, and see how much
lower your count is.

6.5.4 favorite number exercise

Favorite number: write a program that prompts for the user’s favorite number.
Use json.dumps() to store this number in a file. Write a separate program that
reads in this value and prints the message “I know your favorite number! It is

.”

6.6 Putting things together

In Ex.3.2.1, you wrote a program that converts a number of Fahrenheit temper-
ature to Celsius temperature. In this section you will use what you have learned
to write a more sophisticated version of this program.

6.6.1 Temperature conversion exercise

Write a program that prompts the user for a Fahrenheit temperature, then
returns the value in Celsius. The returned value should be printed to the screen
and also stored in a list. When the user is finished entering data, all of the
converted values should be stored in a convenient (i.e., space delimited or comma
delimited) format in a text file.
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Chapter 7

A/D Conversion

Natura non facit saltus.

7.1 Analog and digital signals

Most processes in nature change in a continuous fashion. For example, the color
of a rainbow gradually fades from red to violet; the pitch of a human voice grad-
ually drops from high to low; and the temperature of a cup of tea continuously
falls from hot to cold. Such natural processes are said to be “analog”: they
do not change in discrete steps, or jumps. In fact, until the development of
quantum theory in the early 20th century, this axiom was taken by many to be
an essential feature of nature.1

Computers, however, are not natural; they are artificial. And as described
in Chap.5, most modern computers operate using digital signals: sequences of
ones and zeros. These signals are said to be digital, as opposed to analog, in
the sense that there is a discontinuous jump between a one and a zero. Why
do computers use digital signals? Primarily, because digital data is robust; it is
easier to store and to manipulate than analog data.

Now in order for a digital computer to store or manipulate information about
analog processes, it must convert analog information into digital information.
This is accomplished using two basic devices: an electronic transducer and an
analog to digital converter. The transducer first converts some analog value–
such as light color, air pressure, or temperature–into an analog voltage. For
example, a photodiode detects light intensity variations and converts these into
voltage variations. A microphone detects air pressure variations and converts
these into voltage variations. A thermistor detects temperature variations and
converts these into voltage variations.

1This axiom that “nature does not make jumps” informed the work of Gottfried Wil-
helm Leibniz in developing the method of infinitesimal calculus and also Charles Darwin in
developing his theory of common descent.
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The analog-to-digital converter (ADC), then, converts the analog voltage
output of the transducer into an integer that can be represented digitally: as a
sequence of ones and zeros that your computer can store and manipulate. Your
ESP32 microcontroller has two 12-bit ADCs (more on this in a moment). These
two ADCs support measurements of analog voltage on 18 different channels
(analog-enabled pins). In the following exercises, we will build circuits using
transducers and learn how to use the analog to digital converter of your ESP32.
First, however, let us learn a bit more about two important measurement issues:
resolution and sampling speed.

7.2 Resolution and Sampling Speed

There are two main issues when performing analog to digital conversion: resolu-
tion and sampling speed. Let’s talk about resolution first. Consider a measuring
device such as a meter stick. On a meter stick, the larger the number of ticks
drawn between zero and one meter, the higher the resolution with which the
meter stick may be read. For example, if the meter stick has 100 ticks, then
the meters stick has a resolution of one centimeter; if the meter stick has 1000
ticks, then the meters stick has a resolution of one millimeter. It has a higher
resolution.

The number of ticks drawn on a meter stick is akin to the number of bits in
the analog input register of the ADC. The larger the number of bits, the greater
the resolution of the ADC. For example, a 12-bit ADC has 212 or 4096 “ticks”.
This means any analog voltage value it reads must be assigned to a number
between 0 and 4095. This implies that if the analog to digital converter accepts
a range of voltages between 0 to 10 volts, then the resolution of that ADC is
10volts/4096 = 0.0024 volts. Any variation in the ADC input voltage that is
smaller than 2.4 mV will thus not be detected by the 12 bit ADC.

7.2.1 Dynamic range exercise

1. The resolution in voltage of an ADC is ∆V/2n where ∆V is the total
input range and n is the number of bits of the digital output. What is the
resolution of an 8-bit ADC if it has an input range +5 to -5 V?

2. Since the amplitude of an analog signal can be adjusted by an amplifier
circuit to fill the input range of the ADC, the resolution can be better
described by the dynamic range; this is the ratio of the maximum to the
minimum voltage measurable by the ADC. What is the dynamic range
of the above-mentioned 8-bit ADC? What about the one we are using in
class? By the way, the dynamic range (DR) is often expressed in decibels
(dB); that is DR = 20 log (ratio) in dB. Give your answers in both forms,
as a ratio and in dB.

Now let’s talk about sampling speed. A complication arises when the analog
voltage signal is changing–perhaps rapidly. An ADC requires some “settling
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time” in which to perform the analog to digital conversion. If the analog voltage
signal changes too quickly, then the ADC will not be able to accurately track
the changing signal.

There is a famous result known as the Sampling Theorem, formulated by
Shannon (1949), building on earlier work by Nyquist (1924), which states that
in order to reconstruct the original signal from a sampled signal accurately, the
ADC sample rate should be at least twice the highest frequency in the input
signal. This is called the Nyquist Frequency. If sampling is performed at a
lower rate than the Nyquist frequency, then the higher frequency components
of the signal can masquerade, so to speak, as lower frequency components in
the digital recording. This is an effect called aliasing.2 An example of aliasing
with which you may be familiar is when a spinning automobile wheel is filmed
at 30 frames per second. If the sampling speed (the rate at which images are
captured by the camera, in this case) is too small, then the wheel may curiously
appear to be rotating backwards when viewing the film recording.

7.2.2 Digital recording studio exercise

Analog to digital converters are used quite often to store musical recordings. A
high-fidelity digital recording should represent the true analog signal as faithfully
as possible. This way, when we use a digital to analog converter (more on this
later) to reproduce an analog signal from digitally stored data, it will (in the
case of a sound recording) sound just like the original signal.

1. Suppose a digital recording studio wants to faithfully record the audio
spectrum from 20 to 20,000 Hz. What must be the sample rate so as to
avoid aliasing?

2. What is the maximum conversion time the studio’s ADC can have?

7.3 Digital to Analog Conversion

The inverse of analog to digital conversion is, you guessed it, digital to analog
conversion. Digital to analog conversion is routinely used to convert digitally
stored data into music or your favorite movie. Your ESP32 microcontroller has
two digital to analog converters. The analog output pins, GPIO25 and GPIO26,
are different than the previously used digital output pins in that the digital
output pins can only take on just two discrete voltage values (hi and lo). The
analog output pins, on the other hand, can take on a number of voltage values
that depends on the resolution of the digital to analog computer. The ESP32’s
DAC have 8-bit resolution. This means that our DACs can each output 28

distinct output voltages.3. Digital to analog conversion is fairly straightforward.

2In order to guarantee that no higher frequency signal is being inadvertently sampled by
the ADC is to place a low-pass filter between the transducer and the ADC itself.

3If you are a careful thinker, you may protest that the output of a DAC is not, technically,
analog. You would be correct.
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First, a number corresponding to the desired voltage is sent to one of the analog
output channels. Next, the analog output channel converts this into a voltage.
Wallah.

7.3.1 Analog output exercise

1. What output voltages (and on what channels) would result by sending the
following binary integers to the following analog output channels? Hint:
what are the minimum and maximum output voltages?

case GPIO25 GPIO26
1 1101 0001 0000 1000
2 0000 0000 0000 0000

7.4 Putting it together

The following exercises involve setting up a circuit and using both the ESP32’s
ADC and DAC. To prepare, you should carefully read pages 115 - 123 of the
tutorial. The first exercise involves using a rotary potentiometer. What is a
potentiometer?

7.4.1 Potentiometer exercise

In short, a potentiometer is a type of electrical resistor. Most resistors have two
terminals; when an electrical current is passed through the resistor, a voltage
difference develops between the two terminals of the resistor. The relationship
between the electrical current, I, the resistance, R, and the voltage difference,
V , is given by Ohm’s law:

V = IR (7.1)

A potentiometer is a three-terminal resistor. The additional terminal is ad-
justable, in the sense that it has a sliding contact point between the other two
terminals. This additional terminal, then, will have a voltage value somewhere
between that of the other two. It acts as a so-called voltage divider.

In a rotary potentiometer, the particular location (and hence the voltage
value of) the sliding contact point can be easily adjusted by rotating a small
knob.4. In what follows, we will attach two first two terminals of a rotary
potentiometer to 3.3 volts and ground, respectively. We will use the ESP32’s
ADC to read the voltage of the third terminal. This voltage will of course vary
as we rotate the knob of the potentiometer. We will then use this reading to
inform an LED how brightly to glow.

4In a so-called rheostat, the location of the contact point along a large coil of wire can be
adjusted by moving a slider.
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1. Connect a potentiometer across a known (e.g. 3.3 or 5) volt power sup-
ply and observe the voltage of the wiper (the center connection on the
potentiometer) using a multimeter or an oscilloscope. Be sure you attach
the ground of the scope to the same ground as that of your protoboard.
(You should never connect the oscilloscope probe ground to any point of
a circuit which is not grounded).

2. Now set up the complete circuit as shown on page 119 - 120 and load the
code 08.1 AnalogRead from the Python Codes directory on your computer
onto your ESP32 microcontroller.

3. Run the code and describe what happens as you turn the wiper. Make
a printout of the code, place it in your lab book, and make sure you
understand how it works. How might you modify the code so that it uses
a different input pin?

7.4.2 Digital signal processing exercise

1. Use a function generator to apply a sinusoidally varying voltage to one of
the analog input channels of your ESP32. Write a program that sample
the voltage over a reasonably long time interval. Save the data in an
appropriately named file. What is the highest frequency sine wave that
you can reliably sample?

2. Now write a program that generates an output voltage of a desired fre-
quency. Use the oscilloscope to monitor the analog output channel. What
is the highest frequency sine wave that you can reliably play?

7.4.3 Soft light exercise

Instead of using the DAC to control the brightness of an LED, we can use a
digital output channel. That is what we will do in the following exercise:

1. Build the circuit shown on page 134 of the tutorial.

2. Load the code 10.1 Soft LED onto your microcontroller and run the script.

3. Make a printout of the code and explain how it works.

7.4.4 Nightlamp exercise

Next, we will use the ESP32’s ADC to read the voltage across the terminals of
a photoresistor (a transducer the senses the brightness of light). Then we will
use a digital output port to control the brightness of an LED.

1. Read pages 135-139 of the tutorial and build the circuit on page 138.

2. Load the code 11.1 Nightlamp onto your microcontroller and run the
script.

3. Explain how the code works.
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Chapter 8

Temperature Measurement
and Control

8.1 Introduction

You are probably familiar with how a thermostat works in your home: you
assign a temperature (say, 68 degrees). A thermometer reads the temperature
of the house. If the temperature is too low, a heater is turned on until the
temperature rises above the target temperature, at which point the heater is
turned off. If the temperature subsequently falls below the target, the heater is
turned back on.

In this chapter, we will build a thermostat that regulates the temperature of
an aluminum block at a desired temperature. We will begin by learning how to
build a heater. Then we will learn how to use a thermistor, which is a kind of
electronic thermometer. Finally, we will put this together to build a thermostat.
Let’s begin by talking a bit about Joule heating.

8.2 Joule heating

When an electrical current is passed through a wire, the wire tends to heat up.
This amount of heat energy generated per second by the electrical current is
governed by the so-called Joule heating formula

P = I2R (8.1)

where P is the power, typically measured in Joules per second (or Watts), I is
the electrical current, in Amperes, and R is the electrical resistance of the wire,
in Ohms. So if we know the current and the resistance, we can calculate the
heating power. Generally speaking, for a given current, the larger the resistance,
the greater the heating.

37
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Suppose, on the other hand, that we don’t know the electrical current. In-
stead, we use a battery with a known voltage to drive a current through the
heater wire. We can still calculate the heating power by substituting Ohm’s
law, I = V/R to obtain

P =
V 2

R
. (8.2)

8.2.1 Joule heating exercise

Suppose a manganin wire has a resistance of 8 ohms. The ends of the wire are
attached to a 12 volt power supply.

1. How much electrical current flows down the wire?

2. How many watts of heat are generated by the wire?

3. What do you think would happen if the power supply can only supply a
maximum current of 1 ampere?

8.3 Wire gauge and electrical resistivity

The resistance of a wire, such as the one considered in Ex.8.2.1, depends on the
type of material, the length of the wire, and the cross-sectional area of the wire.
This relationship is given by the formula

R =
ρL

A
(8.3)

where R is the resistance (in Ohms), ρ is the volume resistivity of the material
(in Ohm-meters), L is the length of the wire (in meters), and A is the cross-
sectional area of the wire (in square meters). The cross-sectional area of a wire
depends on its diameter of the wire, and the diameter is specified by the gauge
of the wire.

8.3.1 Resistivity exercise

Consider the manganin wire in Ex.8.2.1 that has a resistance of 8 ohms. Suppose
that the wire is 30-gauge wire (“American Wire Gauge” or AWG 30).

1. Look up the diameter of AWG 30 wire. What is the cross sectional area
of this wire?

2. What is manganin wire made of? Look up the electrical resistivity, ρ, of
manganin wire.

3. How long must his wire be so as to have a resistance of R = 8 Ohms?
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8.4 Heat capacity and thermal response

When a heater wire is wrapped around an object, such as an aluminum block,
the temperature of the object rises. How quickly does it rise? It depends on the
heating power, the mass of the object, and the type material out of which the
object is made. Consider the fundamental equation of calorimetry:

∆Q = mc∆T (8.4)

This formula relates the amount of temperature rise of an object, ∆T , to the
amount of heat deposited, ∆Q, the mass of the object, m, and the specific heat
of the object, c. Recall that the heating power, P , is the amount of heat energy
generated, ∆Q, in a given time interval, ∆t. Namely,

P =
∆Q

∆t
(8.5)

8.4.1 Calorimetry exercise

1. Combine Eq.8.4 and Eq.8.5, to show that the rate of temperature rise can
be given by

∆T

∆t
=

P

mc
(8.6)

8.4.2 Basic heater setup exercise

Now let’s build a push-button heater circuit. The diagram is shown in Fig.8.1.
The heater is a segment of manganin wire wrapped around a block of aluminum.
Manganin, like tungsten in an incandescent light bulb, has rather high electrical
resistivity compared to copper. When the pushbutton is depressed, the circuit
is completed and current flows through the heater.

CAUTION: Whenever you are building or modifying any electrical circuit,
be sure to turn off the power supply. This will reduce the chance of you getting
shocked, and it will also reduce the chance of you damaging equipment. Also:
even though the wiring is rather simple in this circuit, it is a good idea to get in
the habit of using conventional wire color codes. As a rule of thumb, use black
or red wires for high voltagewires and white or green wires for ground wires.
Taking the time to do this will make it easier to trace any circuit errors when
something doesn’t function correctly.

1. Set up the circuit as shown in Fig.8.1. Be sure to include a sketch of the
circuit in your documentation!

2. The mercury thermometer should be inserted into the aluminum block.
Press the pushbutton and observe the temperature rise. While the button
is pressed, record how fast the temperature rises (roughly, in degrees per
second).
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Figure 8.1: Basic heater circuit; the LED indicates when the heater is on.

3. Does the temperature immediately begin to fall when you release the push-
button? Why do you think it behaves in this manner?

4. Does it take longer to rise by 5 degrees above room temperature, or to fall
by 5 degrees back to room temperature? Why might this be?

8.4.3 Theoretical thermal response time exercise

1. Using Eq.8.6 and the thermal properties of aluminum, calculate the the-
oretical rate of temperature rise expected for your aluminum block. In
computing the mass, m, of the block, you will need to know its volume
and density. According to the CRC Handbook of Chemistry and Physics,
the specific gravity (the ratio of the weight to that of water at 4 degrees
Celsius) of aluminum is about 2.7. Also: the specific heat of aluminum is
about 0.22 calories per gram-degree celsius. You’ll need to convert this to
appropriate units.

2. Do your calculations match your experimental results from the previous
exercise? Does the block heat up more quickly or more slowly than an-
ticipated from your calculations? What are your calculations not taking
into account?
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8.5 A bit of first-order response theory

You probably found that your calculated thermal response time is shorter than
the observed thermal response time. This is at least in part because the ther-
mometer itself takes time to respond to changes in the block temperature. This
is a general characteristic of measurement instruments: they take time to re-
spond to a signal. The thermometer is called a first-order instrument; its re-
sponse is determined by the differential equation

τ
dTtherm

dt
+ Ttherm = KTblock (8.7)

K is called the static sensitivity (or the calibration factor). Usually K = 1,
so that when the thermometer temperature, Ttherm, stops changing (such that
the first term equals zero), Ttherm equals the block temperature, Tblock. τ is a
characteristic thermal response time of the thermometer. It depends on the heat
capacity of the thermometer and the quality of the thermal contact between the
block and the thermometer. For an abrupt change in the block temperature,
the solution to this differential equation1 is given by

Ttherm = KTblock

(
1− e−t/τ

)
(8.8)

Notice that when t = τ , the temperature will have risen to 1 − e−1 ≈ 2/3
of its final value. So introducing a sudden step in the block temperature and
observing the response of the thermometer provides a way of determining the
time constant of the thermometer. If, instead of a step change in the block
temperature, the block is continually heated, one may expect a perpetual lag
in the thermometer temperature reading behind the actual temperature of the
block. This all may sound a bit complicated, but it is important when trying
to regulate temperature accurately in a changing environment.

8.6 Thermistor basics

Mercury thermometers are simple, accurate, and reliable devices. Unfortu-
nately, a mercury thermometers does not readily lend itself to computer auto-
mated temperature measurement and control. Instead, we will use a thermistor.
A thermistor is a device whose electrical resistance depends strongly on its tem-
perature. Let’s first set up a circuit, shown in Fig.8.2, to measure temperature
using a thermistor. Basically, the voltage that is read at VT depends on the
ratio of the fixed resistance, R1, and the thermistor resistance, RT . If the two
happen to be equal, then VT will be exactly half of the power supply voltage,
V0. If the thermistor resistance goes down or up, then the voltage VT will also
go down or up.

1The thermal problem is formally analogous to the electrical problem in which a capacitor
is being charged through a resistor by a power supply. The heat capacity is analogous to
capacitance; the thermal resistance between the heater and the aluminum block is analogous
to resistance.
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Figure 8.2: Thermistor circuit

8.6.1 Setting up the thermistor circuit

1. The thermistor should already be mounted in the aluminum block that
you used in the previous exercise. Using a 5 volt power supply as V0,
assemble the circuit as shown in Fig. 8.2 on your protoboard.

2. The relationship between VT and V0 is given by the voltage divider formula

VT

V0
=

RT

RT +R1
(8.9)

Where does this formula come from? Explain using Kirchoff’s laws of
circuit analysis.

3. Invert the above equation to obtain a formula for RT in terms of the
other variables. Now, by measuring VT , you can determine the thermistor
resistance.

4. Write a program which periodically (once per second) reads the voltage,
VT , over the course of, say, 180 seconds, converts these values into ther-
mistor resistance values, and then prints them to a file.

8.7 Drude theory

How does the resistance of a thermistor depend on temperature? According to
the classical Drude theory, the resistivity of a metal depends on the density of
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charge carriers, n, the charge of each charge carrier, e, and the mass of each
charge carrier, m, as well as on the time, τ , between collisions of the mobile
charge carriers and the stationary protons.

ρ =
m

e2nτ
(8.10)

Typically, each atomic nuclei donates one or more electrons to the pool of mobile
electrons. The number density of electrons is therefore huge, perhaps 1022/cm3,
and is nearly independent of temperature. The collision time, however, de-
creases as the temperature rises, since the protons vibrate more vigorously as
the temperature rises. Therefore the resistivity of metals rise with temperature.

On the other hand, the resistivity of a homogeneous semiconductor, such as
Germanium, drops when the temperature rises. Although the Drude theory is
not entirely applicable to semiconductors (actually, neither is it to metals), it
gives qualitative insight into their behavior. For semiconductors, the number
density of charge carriers is very small at low temperatures. This is because the
electrons are typically tightly bound to the atomic nuclei. As the temperature
rises, atomic vibrations become increasingly energetic. The energy required to
strip an electron from a nuclei is given by

Eg = kBT0, (8.11)

where kB is Boltzmann’s constant and T0 is some characteristic temperature.
The probability of an electron being liberated from any given atom by thermal
agitation is given by

P = e−Eg/kBT

= e−T0/T . (8.12)

Thus, the number density (number per unit volume) of free electrons in a semi-
conductor varies as

n = n0e
−T0/T . (8.13)

Using the Drude theory, we see that the resistance of a semiconductor may be
written as

R = R0e
T0/T . (8.14)

In this expression, R0 is a minimum resistance value at very high temperature,
T0 is an activation temperature (in Kelvin), and T is the absolute temperature
(in Kelvin) (0 degrees Celsius = 273.16 Kelvin). The exponential variation of
the resistance with temperature arises due to the rapid variation of the number
of charge carriers with temperature. R0, on the other hand, depends on the
dimensions of the semiconductor and some factors which depend only weakly
upon temperature.

8.8 Feedback and control

Although we have not yet calibrated our thermistor against a known tempera-
ture scale (we will do that a bit later, using the mercury thermometer), we may
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still use it as a rudimentary thermometer since we know that its resistance varies
with temperature. In this section, we will continuously monitor the temperature
of the aluminum block by measuring the resistance of the thermistor, and turn
the heater on or off so as to maintain a predetermined thermistor resistance
(and hence temperature).

Although the output ports of your ESP32 board have a range of several
volts, they cannot supply much electrical current and so, in general, cannot
drive external circuitry loads directly. HEXFETs are one variety of enhanced
mode power FETs (Field Effect Transistors) which are particularly suited for
controlling large amounts of power by using the digital signals coming out of
a computer. In short, we will set up the circuit shown in Fig.8.3 that uses a
HEXFET to turn on or off a heater to regulate the temperature of our block.
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Figure 8.3: HEXFET temperature controller

8.8.1 Digital control of the HEXFET exercise

1. Set up the circuit shown in Fig. 8.3. The HEXFET will act like the
push button switch you used earlier, but it will be controlled by a digital
output port of your ESP32. When a HI signal is applied to the gate of
a HEXFET, the device conducts current like a closed switch; when a LO
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signal is applied, the device acts like an open switch, i.e., it has infinite
resistance.

NOTE: you may need to use two separate power supplies, instead of a sin-
gle one, as shown in Fig. 8.3. This is because: if the HEXFET is drawing
a lot of current, then you may inadvertently load down the power supply,
causing its voltage to drop. This, in turn, will change your thermistor
reading.

2. Connect the gate of the HEXFET to one of your digital output ports.
Wait to turn on the power to the power supply until after you write your
program (next step).

3. Write a short program that will turn the heater on for 10 seconds then
turn the heater off.

4. Test your code. Does it work?

8.8.2 Temperature regulation exercise

1. Now that you can turn the heater on and off, write a program to regu-
late the temperature. The program should first ask the user to enter a
target thermistor resistance. Be careful to pick a reasonable value for the
target resistance. Next, it should execute a loop in which it 1) reads the
voltage across the thermistor, converts this to a resistance, and prints its
value to the screen, and 2) turns the heater on or off so as to approach
the target thermistor resistance. Run the program and demonstrate to
your laboratory instructor that the thermistor stabilizes at the target re-
sistance. When testing, be sure to turn off the heater manually (or with
a statement at the end of your program) to ensure that the heater does
not overheat.

8.9 Thermistor temperature calibration

We now have a working temperature controller. Unfortunately, we do not know
the temperature at which we are controlling. We will now calibrate the ther-
mistor against a mercury thermometer inserted into the aluminum block. Re-
member that the block may take a short while to equilibrate at the target tem-
perature. What we want to do, then, is to select a target resistance, initiate our
temperature controller, wait a short while until the resistance stabilizes, then
record the resistance and the corresponding temperature from the mercury ther-
mometer. We will repeat this procedure for several values or resistance between
room temperature and about 100 degrees Celsius. This will give us calibration
data: thermistor resistance versus temperature.
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8.9.1 Thermistor calibration runs

1. Modify your previous program so that, in addition to printing the resis-
tance values to the screen, it saves them in a numerical list. It should
collect data once per second for perhaps 240 seconds, or until the ther-
mometer reaches equilibrium. After data collection, it should prompt the
user to enter the temperature shown on the mercury thermometer and
should record this. Finally, it should create an appropriately named data
file with two columns. In the first column, it should record the time; in
the second column, it should record the thermistor resistance value. Test
to be confident that the program you have written generates a data file.

2. Inspect your data file (preferably by using a plotting program) to be sure
that the resistance had equilibrated by the end of the data collection run.
If it had, then you know the resistance corresponding to one particular
temperature. If it had not, then you should modify your program so that
it collects data for a bit longer. Once you are satisfied, perform 10 or
15 calibration runs over a wide range of temperatures. Make a table of
resistance versus temperature in your lab notebook.

8.10 Least squares fitting to data

Thus far, we have a table of our thermistor’s resistance and a number of tem-
perature values. We would like to find the resistance at any given temperature
within the range in which we calibrated our thermometer. To do so, we will need
to find a mathematical equation which fits out data: Eq. 8.14. This equation
can be cast in the form of a straight line; then we can use a linear least-squares
fit to fit this formula to our data. Let us be a little more precise. Taking the
natural logarithm of Eq. 8.14 gives

lnR = lnR0 +
T0

T
. (8.15)

By setting

y = lnR A = T0 x =
1

T
and B = lnR0, (8.16)

Eq. 8.15 becomes
y = Ax+B, (8.17)

which is the equation for a straight line. By finding values for A and B from
the linear plot, values for R0 and T0 can be easily calculated. In doing the
experiment, you have acquired data at a sequence of values of temperature Ti

or alternatively Xi = 1/Ti. Each of these temperatures yielded an experimental
resistance value Ri or alternatively Yi. The model equation yields a theoretical
resistance value Rth

i for each temperature, i.e., for each Xi a theoretical value
Y th
i = lnRth

i is given. The task is to find values for A and B to minimize
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the error between the experimental and theoretical values, Ei = Y th
i − Yi. A

common type of analysis minimizes the sum of the squares of the individual
errors. Calling the total square of the error ET , we get

Et =
∑
i

E2
i

=
∑
i

(
Y th
i − Yi

)2
=

∑
i

(AXi +B − Yi)
2

(8.18)

To minimize this error with respect to the parameters A and B we take deriva-
tives with respect to A and B and set them equal to zero:

∂Et/∂A = 0

=
∑
i

2Xi (AXi +B − Yi)

∂Et/∂B = 0

=
∑
i

(AXi +B − Yi) (8.19)

Taking A and B out of the summations and collecting terms gives

ASXX +BSX = SXY

ASX +BS = SY (8.20)

where

SXX =
∑
i

X2
i

SY =
∑
i

Yi

SX =
∑
i

Xi

S =
∑
i

1

SXY =
∑
i

XiYi (8.21)

Then solving for A and B

D = SSXX − S2
x

A =
SSXY − SXSY

D

B =
SXXSY − SXY SX

D
(8.22)
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8.10.1 Least squares fit to data

1. Write a program to find values for A and B using a linear least squares
fit to arrays of data x[i] and y[i]. Use the program to obtain the model
fit to your resistance and temperature data and obtain values for T0 and
R0. When you are satisfied with your program, make a printout and put
it in your lab book.

2. Using your favorite plotting program, plot the theoretical fit as a line to-
gether with your experimental values. It might be a good time to become
familiar with a plotting program such as MatPlotLib or Igor Pro. Im-
portantly: your plot should be clear and pleasant to behold. Your axes
should be labelled neatly; the axis limits should be nice round numbers;
the data should fill (but not fall off the edge of) the graph; the font should
be clean; the data points should be large enough to see, etc.. In short: it
should be a work of art. Make a printout of your plot and put it in your
lab book.

The least squares fit assumes the measured data will be randomly scattered
about the theoretical fit. The plot of the previous exercise does not show this
clearly. A quick visual test of this assumption is to make a plot of the difference
between the data and the fit, i.e., plot the errors Ei. These are called the
residuals.

8.10.2 Plot of residuals

1. Make a plot of the difference between the measured data and the theoret-
ical fit to the data of the previous exercise. By inspection determine if the
assumption of random errors was justified. Print out your plot and put it
in your lab book.

8.10.3 A better temperature controller

1. Now that we have determined R0 and T0, we may easily convert any tem-
perature into a thermistor resistance and vice versa. Modify your temper-
ature controller program so that instead of asking for a target resistance,
it asks for a target temperature. It should then proceed, as before, to reg-
ulate the temperature at the target value for some time. Note: In order
for your c-code to invoke mathematical functions, such as sin() or ln(),
you will need to include the “math.h” header file. You may also need to
use the flag “-lm” to link to the math library when you compile your code.

2. Finally, change your program so that instead of using the digital output
port to turn the heater on or off, it uses the analog output port. Instead
of simply turning the heater on or off, which causes significant overshoot,
the DAC should apply a voltage to the gate of the HEXFET which is
proportional to the difference between the target temperature and the
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measured temperature. This should allow for more precise temperature
control. To display how well your temperature controller works, collect a
data set and make a plot of temperature versus time. How well can you
control the temperature? One way to characterize the level of control is
the root mean square temperature fluctuation.

8.11 Errors in data and parameters

In fitting a theoretical model to data in the least squares method, the implicit
assumption has been made that each data point has been measured with the
same reliability. This is often not the case and it is then important to include
a measure of the data reliability when fitting a model to these data. Another
result of frequent interest which is not obtainable by the simple least squares fit
is to determine how much the fitted parameters can vary without straining the
fit to the data (how good is the fit?).

To make a statement of how good a measurement is we usually quote the
value measured together with an expected error; for example a voltage is V ±∆V
volts. An accepted definition of ∆V is that it is the root mean square (rms)
value of the random error inherent in the measurement.

Consider a plot of a proposed theoretical fit and the data points Yi ± ei
at a series of parameter values Xi. Assume the Xi are well determined (no
uncertainty). The true variation of Y (X) is given as some function of X. For
sake of discussion assume that Y is of the form Y (X) = AX + B where the
parameters A and B are to be determined.

The total error can now be written as

ET =
∑
i

[
(AXi −B)− Y ex

i

ei

]2
(8.23)

where ei is the error in the data point Yi. A small error ei at data point Yi

will cause the difference between the model and the data point to be weighted
heavily in the sum. Thus the points with small errors have a stronger effect on
the fit. Proceeding as before yields the same formula for A and B except that
now

SXX =
∑
i

X2
i /e

2
i

SY =
∑
i

Y 2
i /e

2
i

SX =
∑
i

Xi/e
2
i

S =
∑
i

1/e2i

SXY =
∑
i

XiY
ex
i /e2i (8.24)
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By standard rules of error propagation analysis, the errors in the estimates of
A and B are determined to be

e2A = S/D

e2B = SXX/D (8.25)

where D = SSXX − S2
X as before.

Keep in mind that the estimation of the parameters A ± eA and B ± eB
by the least squares method is a statistical one, i.e., given the data and the
model junction, the calculated parameters A and B are the most likely ones for
the system. The method assumes that the errors made in the measurements are
random. It does not consider any systematic errors which may be lurking in your
data. These last need to be ferreted out by careful thought and experimentation.

8.11.1 Errors in thermistor data

1. Make an evaluation of the error in your resistance determinations with
the ADC and reanalyze the thermistor data with error considerations. To
simplify error analysis, assume some reasonable constant error (∆Ri =
∆R for all i) and simplify the error equations by factoring the errors out
of the sums.

8.11.2 Scientific Writing Assignment

An important part of this course is learning how to write a scientific paper. To
this end, you should write a scientific paper, no more than four pages in length,
which describes your work in calibrating your thermistor. This paper will serve
as a warm-up, so to speak, for your final paper in this course. It will provide
you with an opportunity to obtain feedback from your instructor regarding your
scientific writing. To help you, your instructor will provide you with a few well-
crafted scientific papers that can serve as examples. Your paper should include
the following elements:

1. A heading which includes the title, the name of the authors, and the
affiliation of the authors (institution and address).

2. An Abstract which states succinctly the most important results of your
experiment.

3. An Introduction, which provides background on the problem which is being
addressed in the paper. The introduction typically describes previous
theoretical or experimental work that has been done on the problem.

4. An Experimental apparatus and procedure section description of your ap-
paratus design and operation. This is the place to report the dimensions
of your apparatus, the make and model of any equipment used, the ex-
perimental conditions, and the sequence of events that were carried out
to perform a typical experiment.
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5. A Results and discussion section in which you present your data, data
plots, and your method of analysis including any formulae. Are your
results reasonable? What are the most significant sources of error in your
experimental results? This section may also involve some discussion for
difficulties or avenues for further work.
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Chapter 9

Timers and Interrupts

9.1 Introduction

In this chapter, you will learn how to use hardware timers and interrupts to
orchestrate events in a synchronous manner. These features are very useful for
scheduling future microcontroller tasks, such as reading a pin value at regular
intervals, or triggering a function call when a button is pressed.

9.2 Timers

Micropython’s machine module provides many useful functions and classes to
access the esp32’s available hardware. One of these classes is the Timer class,
which provides an easy-to-use interface for requesting that a function be called
in the future. Timer objects give you precise control over when an event takes
place and therefore provide a more efficient and precise alternative to “busy-
waiting” or polling:

1 while condition:

2 task()

3 sleep(duration)

where a function is called within a while loop and a sleep() is used to limit
how often it’s called. An additional perk to using Timer objects is that you now
free up the esp32 to perform other tasks, instead of sleeping most of the time.

The esp32 has 4 hardware timers, enumerated 0-3, that can be controlled by
the software Timer class. Timers can be initialized to run in two modes:

1. ONE SHOT mode where a function is called once after a given delay, and

2. PERIODIC mode where a function is repeatedly called at a given frequency
or period.

53



54 CHAPTER 9. TIMERS AND INTERRUPTS

The function that you give to a Timer object to call on your behalf has been tra-
ditionally called a callback function. Pause now and read the documentation
on Timers.

9.2.1 Blink an LED

Your first task is to set up a basic timer that periodically blinks an LED. Please
follow the steps below, and refer back to the Freenove tutorial’s Project 2.1 if
needed.

1. Connect an LED and resistor in series between an output pin and ground.

2. Create a Pin object, making sure to specify it in output mode (Pin.OUT).

3. Create a callback function which takes in a timer object as its only argu-
ment. Inside the function toggle the LED state (on/off) using led.value(not
led.value()).

4. Create a Timer object, selecting which of the 4 hardware timers to use
(0-3).

5. Finally, initialize the timer to periodically toggle the led on/off every
500ms.

Running the program, you should see the LED blink on/off with a 1s period
(Figure 9.1). In order to stop the Timer you must call the object method
deinit().
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Figure 9.1: Blinking an LED using a timer with a period of 500ms

https://docs.micropython.org/en/latest/library/machine.Timer.html
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Note that while the LED is flashing, the Python interpreter is available for
interacting with. Add to the bottom of your Python script a while loop (or
another Timer!) that prints “Hello, multitasking!” to demonstrate that you can
flash an LED while simultaneously printing.

9.2.2 Sequencing events

Consider an experimental apparatus where some hardware must be initialized
before periodic data collection can take place. Let’s model this situation using
two LED’s: The red LED is on during initialization, then shuts off indicating the
apparatus is ready. A blue LED is then pulsed periodically until data collection
is complete (3 samples collected). See 9.2.2) for an example.
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The general strategy for orchestrating the red/blue sequences is to use timers
to wake up and change the states of the LED. There are many ways to accom-
plish this, but one approach could be:

1. Turn on the red LED, then start a timer that wakes up in 2 seconds.

2. The timer’s function would turn off the red LED, and then start a new
timer that periodically flashes the blue LED.

3. To stop data collection, the callback function that is turning on/off the
blue LED can increment a counter, and then deinit() it’s own timer
object. Remember that the Timer object is the argument passed into the
callback function.
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9.3 Interrupts

How do hardware timers work? By using hardware interrupts. Interrupts are
requests given to the esp32’s runtime that instruct the hardware to “react” to
a change in an event.

The easiest way to demonstrate interrupts is with a switch. Refer back to
Project 2.1 if you need help connecting a switch. Let’s set up an interrupt that
increments a counter whenever we press down on the switch.

1 counter = 0

2 def increment_counter(pin):

3 global counter

4 counter += 1

5 print(counter)

Create a Pin object as we normally do. Then register a handler (callback)
function to be called when the Pin changes value. The voltage at the pin is
3.3V before pressing and drops to 0V when pressed. Since the value drops when
pressed we want to trigger on the Falling Edge of the signal (Figure 9.3).

1 switch = Pin(21, Pin.IN)

2 switch.irq(handler=increment_counter , trigger=Pin.IRQ_FALLING)

Press the switch and ensure that it increments the counter.

9.4 Noisy switches

Press the encoder 10 times. What is the final count? It’s probably different
than 10 (if not do it again, and press quickly!). The imprecise counting happens
because hardware switches are noisy (they don’t cleanly turn on or off but
mechanically vibrate). These vibrations call the handler functions many times
instead of just once (Figure 9.2).

You may remember in Project 2.2 that mechanical vibrations can be ignored
via a combination of if’s and and a while loop (non-ideal).
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Figure 9.2: (Left) Mechanical switches can vibrate on/off before settling into
a stable state. (Right) Oscilloscope trace of a real switch demonstrating this
phenomenon.

1 button = Pin(21, Pin.IN, Pin.PULL_UP)

2
3 while True:

4 if not button.value ():

5 time.sleep_ms (20)

6 if not button.value ():

7 handler ()

8 while not button.value ():

9 time.sleep_ms (20)

The above code waits for 20ms after a press in hopes that the oscillations
calm down. If it’s still oscillating, then it keeps waiting in 20ms intervals until
the signal stabilizes. This strategy works, but we essentially lock up the CPU
from performing any other tasks.

The same waiting process can be done much more efficiently using interrupts
and Timers. The general strategy is the same as the looping code above:

1. Recognize the first button press

2. Set up a period of waiting

3. Wake up and check if the switch is done vibrating

4. Call the handler function once

5. Go back to step 1

We will use a combination of interrupts and Timer objects to wait for the
mechanical vibrations to stablize before calling the callback function. The code
is below and heavily commented, so please take some time to understand how
it works.
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1 from machine import Pin , Timer

2 from micropython import schedule

3 import micropython

4 # space for exception messages when inside irq

5 micropython.alloc_emergency_exception_buf (100)

6
7
8
9 class DebouncedSwitch:

10 """ Tolerates mechanical vibrations of a switch and calls

11 the given callback after the switch has settled down.

12 Callback is called on falling edge , i.e. pressing the switch

13 descreases the voltage on the pin.

14
15 """

16 def __init__(self , pin_num , callback , delay =50, timer_id =0):

17 self.pin = Pin(pin_num , Pin.IN)

18 self.callback = callback

19 self.delay = delay

20
21 self.timer = Timer(timer_id)

22 self.timer.deinit ()

23
24 # 1. recognize first button press

25 self.pin.irq(self._start_timer , trigger=Pin.IRQ_FALLING)

26
27 def _start_timer(self , pin):

28 self.pin.irq(None) # disable irq to ignore any bounces

29 # 2. Set up waiting period

30 self.timer.init(period=self.delay ,

31 callback=self._timer_wakeup)

32
33 def _timer_wakeup(self , timer):

34 # 3. Wake up and check if

35 timer.deinit () # stop timer

36 if not self.pin.value (): # true if stabilized

37 # 4. Call handler once (we must use schedule

38 # to call our function if within an irq)

39 schedule(self.callback , self.pin)

40
41 # 5. Go back to step 1

42 self.pin.irq(self._start_timer , trigger=Pin.IRQ_FALLING)

You can place this code into a separate Python file and then import it into
your project. Create a switch object using

1 switch = DebouncedSwitch (21, increment_counter)

and then try pressing the debounced switch 10 times (quickly). Is it better
behaved than before? Note that the Python shell is available for typing and
performing other tasks. The DebouncedSwitch class is asynchronously handling
the vibrations of the switch in an efficient manner.
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9.5 Summary

In this Chapter, you learned how to precisely orchestrate a sequence of events
using Micropython’s Timer object, and how to use interrupts to trigger software
changes when a hardware event takes place (e.g. a pin’s voltage changing).
You learned that these features are supported by the esp32 hardware which
provides 4 hardware timers that can trigger interrupts. We then demonstrated
a realistic application of these features by creating a software object to handle
a mechanical switch that does not cleanly turn on/off. Timers and interrupts
are a great alternative to busy-waiting or polling.
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Chapter 10

Thermal Diffusion
Experiments

10.1 Introduction

In the previous chapter, we built a temperature controller that employed a
heater and a thermistor. A temperature scale for the thermistor was obtained
by calibrating it against a mercury thermometer. We will now put our knowledge
to use to study the properties of matter. In particular, we will apply a heat
pulse to the end of a copper rod and measure the temperature at points along its
length. From these measurements, we will determine the thermal conductivity
and the heat capacity of our sample of copper.

10.2 Heat flow equation

When we calibrated our thermistor, we modelled the temperature dependence of
its resistance using a particular formula, R = R0e

T/T0 . We did not choose this
formula arbitrarily; rather it was physically motivated by our understanding of
the conduction of electrons in a semi-conducting material. Furthermore, the
parameters that appear in the formula, T0 and R0, have physical meanings: the
activation temperature, and the limiting resistance at very high temperatures,
respectively.

We will use a similar procedure in modelling heat flow in our copper rod.
We will use what is called the diffusion equation. The specific heat, c, and the
thermal conductivity, k, are parameters that appear in the diffusion equation.
In this section, we will derive the diffusion equation.

Nearly all energy eventually becomes heat. Heat is a form of energy associ-
ated with the random motion of particles. Furthermore, heat tends to flow from
warmer to colder objects. As an example, if a warm object, Ta is brought into
thermal contact with a cold object, Tb, an amount of heat ∆Q will flow from
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a to b. The temperature change of object a is given by ∆Ta = −∆Q/maca,
that of object b is given by ∆Tb = −∆Q/mbcb. Here, m is the mass of the
object, measured in kilograms, and c is its specific heat, measured in Joules per
kilogram-Kelvin.

The rate of heat transport is called the power, and is given by

P = ∆Q/∆t. (10.1)

Instead of two objects, we might consider heat transport through a rod of length
L whose left end is held at a warmer temperature than its right end. The amount
of heat deposited in a particular segment of length ∆z, in time ∆t, is simply
the difference between the amount of heat coming in from the left and going
out to the right:

∆Q = [P (z)− P (z +∆z)]∆t. (10.2)

Linearizing this equation, we obtain

∆Q =

[
P (z)− P (z)−

(
dP

dz
∆z

)]
∆t. (10.3)

Thus, the rate of heat flow is given by

∆Q

∆t
= −

(
dP

dz

)
∆z. (10.4)

Now, recall that when a bit of heat ∆Q is added to a mass m, its temperature
increases by the amount ∆T = ∆Q/mc. The rate of temperature rise for a
segment of length ∆z and density ρ can then be written as

∆T

∆t
=

1

ρAc∆z

∆Q

∆t
. (10.5)

Combining Eqs.10.4 and 10.5, we see that

∆T

∆t
= − 1

ρAc

(
∆P

∆z

)
. (10.6)

In seems reasonable that the power, or rate of heat transport, is proportional
to the gradient of the temperature, dT/dz, as follows:

P = −kA
dT

dz
. (10.7)

Here, A is the rod’s cross sectional area (square meters) and k is the thermal
conductivity (watts/cm-kelvin). Plugging this into the previous equation, we
obtain

∆T

∆t
= − 1

ρAc

(
d

dz

[
−kA

dT

dz

])
. (10.8)
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If the thermal conductivity is independent of temperature, and hence position,
which we will assume, it can be pulled outside of the spatial derivative along
with the cross sectional area. In the limit of ∆t → 0, we can then write Eq. 10.8
in the form:

dT

dt
=

k

ρc

d2T

dz2
. (10.9)

This is the diffusion equation. We may define D ≡ k/ρc, the thermal diffusivity,
whose units are cm2/second. For our copper rod, k ≈ 4 × 107 erg/cm-s-K,

ρ ≈ 9 g/cm
3
, and c ≈ 4× 106 erg/g-K. (We here use the CGS, rather than the

MKS system of units.) You should look up the precise values for these physical
quantities in the CRC Handbook of Chemistry and Physics.

The diffusion equation may be solved analytically by considering the ideal
case of an infinitely long one-dimensional rod and assuming that all of the heat
is deposited at one location at t = 0. We will consider this case. The solution
to the diffusion equation is then

T ′ = B1 +B2
1√
t
e−z2/4Dt. (10.10)

The reason for the T -prime notation will become apparent in a moment. (It
does not indicate a derivative.)

10.2.1 Diffusion equation solution

1. Determine the thermal diffusivity for a piece of copper

2. Verify that the above solution in fact satisfies the diffusion equation.

We have here two unidentified parameters, B1 and B2. After a long time has
passed, the second term becomes zero, and the rod should be at ambient tem-
perature, T ′

0. Thus, B1 = T ′
0. Defining T = T ′ − T ′

0, we may write the solution
to the diffusion equation as

T = B2
1√
t
e−z2/4Dt. (10.11)

T is therefore the difference between the ambient temperature and the temper-
ature of the rod at a particular point at a particular time. We will call it the
“excess temperature.” To identify B2, we recognize that the total heat added
to the rod, Q, may be found by integrating the quantity dq = mcT over the
length of the rod:

Q =

∫ ∞

0

dq

=

∫ ∞

0

dz ρAcT

=
ρAcB2√

t

∫ ∞

0

dz e−z2/4Dt. (10.12)
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Performing this Gaussian integral and solving for yields

B2 =
Q

A
√
πρck

. (10.13)

10.2.2 Integration practice

1. Perform the above integral and verify the equation for B2

Now we can write the solution to the diffusion equation in terms of meaningful
variables:

T =
Q

A
√
πρckt

e−z2/4Dt. (10.14)

This equation for T is still a bit complex; to elucidate its meaning, let us iden-
tify a characteristic time scale, τ , and a characteristic temperature scale, Θ,
associated with a particular position along the rod. We define

τ =
z2

4D
and

Θ =
2Q

Aρcz
√
π
. (10.15)

Now, we can write the solution to the diffusion equation in dimensionless form:

T

Θ
=

√
τ

t
e−τ/t (10.16)

10.2.3 Reduced temperature and time

1. If one joule (1 × 107 erg) of heat is added to a 1/8 inch diameter copper
rod, what is the value of Θ at a the location of each of your thermistors?

2. What is the value of τ at the location of each of your thermistors?

3. Verify that, using the above definitions, you can write the solution to the
diffusion equation in this dimensionless form.

4. Verify that the maximum of T/Θ occurs at a time t such that t/τ = 2. This
will be used in your experiments to determine the diffusivity of copper.

5. Verify that at t/τ = 2, T/Θ = 0.43. This will be used in your experiments
to determine the value of ρc.

What is the point of this kind of analysis? If we have a thermometer placed along
the rod a few centimeters from the heat source, we can measure its temperature
as a function of time. If we know the amount of heat added to the rod, Q
and the maximum temperature, Tmax, at the location of the thermometer, z,
we can then determine the value of ρc. Furthermore, from the time at which
Tmax occurs, we can determine τ , and hence D. Finally, from D and ρc, we can
determine k, the thermal conductivity of copper
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10.2.4 Heat capacity

1. Verify that

ρc =
0.86Q√
πAzTmax

(10.17)

10.3 Experimental setup

The apparatus which we will use to measure the thermal conductivity of copper
consists of a 1/8 inch outer diameter (o.d.) copper rod soldered to an aluminum
base. Affixed to the rod with Stycast 2850 (thermally conductive) epoxy are
(i) a 2.2 Ohm carbon resistor at one end which serves as the heater, and (ii) two
thermistors spaced along the length of the rod. Insulated 10 mil1 o.d. manganin
wire is used to make electrical connections between the heater and thermistors
and an 8 pin hermetic electrical feed-through epoxied into the aluminum base.
Insulated 22 gage copper wires connect the feed-through to the proto-board.

The proto-board contains two circuits, very similar to the ones you have
constructed previously for your temperature controller. On the left side of Fig.
10.1 is the heater part of the circuit. Notice that now we use an 18 volt power
supply. We want to dissipate a lot of energy in the heater in a short time period,
so you should use a power supply that can deliver up to four or five amps.

On the right side of Fig. 10.1 is the thermometer part of the circuit. The
only difference between this and your previous circuit is that now we will be
reading the voltage across two thermistors at different locations on the copper
rod.

10.3.1 Circuit assembly

1. Assemble the circuit on your proto-board, as shown in Fig. 10.1. Make
a sketch of the circuit in your lab notebook, clearly labelling the circuit
elements.

Note: Since the heat input to the rod will be rather brief (and hence, not
much heating power), the temperature rise that is measured by each thermistor
may be quite small. To resolve the temperature rise, we may need to amplify
the input to the ACD channels. More on this to come...

10.3.2 Control program

1. Write a program that will, first, turn the heater on for an interval of one or
two seconds; second, record the temperature of the two thermistors several
times per second and store them in an array; third, ask the user for an
output file name; fourth, open an output file and store the temperature
versus time data in the data file. Print out a copy of the program once
you get it working and place a copy into your lab book.

1One “mil” is one thousandth of an inch. This is sometimes also called a “thou”.
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Figure 10.1: The heater and temperature control circuits for the thermal diffu-
sion experiments.
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10.4 Conducting the experiment

10.4.1 Data collection

1. Use your control program to apply a short heat pulse to the end of the
copper rod and measure the evolution of the temperature at the thermistor
locations as a function of time. You will need to collect data for perhaps
four minutes in order for the temperature to return to room temperature
after applying the heat pulse.

10.4.2 Data analysis

1. View your data using a plotting program. By identifying the maximum
temperature for a particular thermometer, you can determine ρc, the prod-
uct of the density and the specific heat of copper. By identifying the time
at which this maximum occurs, you can determine the value of the diffu-
sion constant, D. From these two measurements, you can determine the
thermal conductivity, k.

2. You may need to make the following correction. Recall that the analysis
assumed that the heat was imparted to the rod instantaneously. In our
case, we dissipated energy over perhaps one second. Therefore, you may
need to shift the right (on the time axis) by a half a second to (roughly)
account for this.

3. Also, you may obtain better results for the thermal conductivity if you
perform a curve fit of the solution to the diffusion equation,

T =
Q

A
√
πρckt

e−z2/4Dt. (10.18)

to your data, allowing ρc and D to be fitting parameters.

4. Another source of error arises from the fact that not all of the heat Q
dissipated in the heater travels through the copper rod; some of it travels
through the surrounding air. Would this lead you to overestimate or to
underestimate the thermal conductivity of the copper rod?

5. Evacuate the air from the vicinity of the copper rod and repeat the ex-
periment to obtain a more accurate value for k.

10.4.3 Final paper

Now that you have set up your experiment, collected your data, and performed
some analysis, you will need to share your results with the world! To this end,
you will need to write a short scientific paper. The paper should be no more than
four pages long, and should be composed in the style of the Physical Review.
You may wish to look at a few papers to get a feel for the formatting. Your
paper should include the following elements:
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1. An abstract which states succinctly what you did and what you found.

2. An introduction or overview which describes the relevance of your ex-
periments and previous work on this subject. You will need to do a
literature search to find previous work on the topic. I’d start with the
SAO/NASA Astrophysics Data System (http://adsabs.harvard.edu) or a
Google scholar search.

3. An experimental apparatus and procedure section description of your ap-
paratus design and operation. This is the place to report the dimensions
of your apparatus, the make and model of any equipment used, the ex-
perimental conditions, and the sequence of events that were carried out
to perform a typical experiment.

4. A results and discussion section in which you present your data, your
method of analysis and your results. Be sure to compare your results with
any previous or accepted values. If they differ, you need to provide a
reasonable explanation as to why this is so. Which results are most reli-
able? What are the most significant sources of error in your experimental
results?
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